
Under Construction:
Delphi 2.0 AddIn Experts
by Bob Swart

Delphi 1.0 has three kinds of
experts: project, form and

standard. The first two can be
found in the Options | Gallery (or
Repository in Delphi 2.0) dialog,
while standard experts (like the
Database Form Expert) are in the
Help menu. Delphi 2.0 added a
fourth kind of expert to this collec-
tion: the special AddIn Experts,
which have to deal with the inter-
face to Delphi all by themselves.
This article will focus on writing
AddIn Experts for Delphi 2.0.

The major reason why everyone
thinks experts are difficult is be-
cause they are not documented.
Not in the manuals or on-line Help,
that is (there have been some
magazine articles and even a chap-
ter in one particular book on this
topic, but that’s it). The main
source of information is the source
code itself! If you take a look at the
documentation and source code
on your hard disk, you’ll find some
important files and even two exam-
ple experts that are installed
automatically by Delphi. The exam-
ple files can be found in the
SOURCE\TOOLSAPI subdirectory
(for Delphi 2.0), and are
EXPTINTF.PAS and TOOLINTF.PAS.
The first one shows how to derive
and register your own expert, while
the second one shows how to use
Delphi’s tool services to make the
integration complete.

First of all, for all Delphi experts,
we need to have a look at the
abstract base class interface
definition in EXPTINTF.PAS located
in directory SOURCE\TOOLSAPI\,
which is shown in Listing 1.

If we want to derive our own
AddIn expert, we have to derive it
from the abstract base class
TIExpert. Since it is an abstract base
class, it would seem that we need
to override each function. How-
ever, we don’t need GetMenuText
and GetState (which are only used

by standard experts) nor do we
need GetGlyph, GetPage and
GetComment (which are only used by
project and form experts). Finally,
there is no need to have an Execute
method since we have to find
another way inside Delphi to
activate our AddIn expert.

This actually leaves us with four
interface methods: GetIDString,
which needs to return a unique ID
string for every expert we register;
GetStyle, which needs to return the
esAddIn style; GetName, which is
needed (otherwise you’ll get an

access violation if you try to load
your expert – I tried!) and finally
GetAuthor which is not really
needed (only for form and project
experts) but I decided to add this
one for completeness. Overriding
these four functions, we can write
our first non-functional AddIn
expert for Delphi 2 (Listing 2).

Since we don’t have an Execute
method (for AddIn experts Execute
is never called), we seem to have
missed something. Our expert
skeleton is complete, but we still
have to find a way to get inside

Type
 TBAddInExpert = class(TIExpert)
 function GetStyle: TExpertStyle; override;
 function GetIDString: String; override;
 function GetName: String; override;
 function GetAuthor: String; override;
 end {TBAddInExpert};

function TBAddInExpert.GetStyle: TExpertStyle;
begin
 Result := esAddIn
end {GetStyle};

function TBAddInExpert.GetIDString: String;
begin
 Result := ’DrBob.AddIn.Expert’
end {GetIDString};

function TBAddInExpert.GetName: String;
begin
 Result := ’DrBob.AddIn.Expert’
end {GetName};

function TBAddInExpert.GetAuthor: String;
begin
 Result := ’Bob.Swart’
end {GetAuthor};

➤ Listing 2

Type
 TExpertStyle = (esStandard, esForm, esProject, esAddIn);
 TIExpert = class(TInterface)
 public
 { Expert UI strings }
 function GetName: string; virtual; stdcall; abstract;
 function GetAuthor: string; virtual; stdcall; abstract;
 function GetComment: string; virtual; stdcall; abstract;
 function GetPage: string; virtual; stdcall; abstract;
 function GetGlyph: HICON; virtual; stdcall; abstract;
 function GetStyle: TExpertStyle; virtual; stdcall; abstract;
 function GetState: TExpertState; virtual; stdcall; abstract;
 function GetIDString: string; virtual; stdcall; abstract;
 function GetMenuText: string; virtual; stdcall; abstract;
 { Launch the Expert }
 procedure Execute; virtual; stdcall; abstract;
 end;

➤ Listing 1

44 The Delphi Magazine Issue 13

Delphi and make sure we can get
some action somehow. This is
where the Menu Interface classes
from TOOLINTF.PAS come into play.
See Listings 3 and 4.

The TIMainMenuIntf class repre-
sents the Delphi main menu. We
can actually get a list of menu items
by calling GetMenuItems (which
returns the top level menus) and
we can search for a specific menu
item with FindMenuItem, as long as
we know the exact VCL component
name of the particular item (ie not
the name of the menu as it appears
in the menu bar, but the name of
the menu item component itself).

Once we have a list of
menuitems, or we have found one
particular menu item, we have a
much more powerful component in
our hands: the TIMenuItemIntf, an
expert’s interface to menu items,
with which we can add our own
menu item(s) into the Delphi menu
system! See Listing 4.

The TIMenuItemIntf class is cre-
ated by Delphi. This is simply a
virtual interface to an actual menu
item found in the IDE. It is the re-
sponsibility of the client to destroy
all menu items which it created.
Failure to properly clean up will
result in unpredictable behaviour,
according to the comments in the
source code of the class
TIMenuItemIntf.

Functions that return a
TIMenuItemIntf should be used
with care. Unless created by a par-
ticular add-in tool, we should not
keep the menu items for long, since
the underlying actual VCL
TMenuItem may be destroyed with-
out any notification (in which case
we’re holding a pointer to no-
where). In practice, this only
pertains to Delphi created menus
or menus created by other add-in
tools. It is also the responsibility of
the user to free these interfaces
when finished. Any attempt to
modify a menu item that was
created by Delphi will fail.

The most important functions
are DestroyMenuItem, which needs
to be called whenever we get a
menu item from Delphi (that is,
allocated by Delphi, in, for
example, the GetParent or GetItem
functions).

Any menu item can have sub-
menus. The function GetItemCount
returns the number of submenus.
Using GetItem we can walk through
the list of menu items (GetItem is
zero-based, so start by counting
from 0 to GetItemCount-1, otherwise
you’ll get an Index out of bounds
exception). All TIMenuItemIntfs we
get from GetItem must be freed by
calling DestroyMenuItem on them.

To get the true VCL component
name of a menu item, we need to
call the GetName method. This func-
tion is important, since we need the
actual name to be able to search for
menu items in the main menu (with
the FindMenuItem function). Actu-
ally, it seems that we would need a
list of names first, before we can
actually search for a unique one.

Any menu item has a menu
parent, and we can get the parent
menu item by calling GetParent
(obviously). A parent menu is
important, since we must use the
parent to be able to install a menu
item next to another (in practice
this means that the parent gets
another child).

Using the GetCaption and Set-
Caption methods we can get and set
the actual captions of the menu
items. This may be useful, but can
be very confusing (although we can
only modify menu captions that are
not part of the Delphi IDE skeleton
– ie we can modify the text for the
Database Expert, but we cannot
modify the File menus). Using
GetShortCut and SetShortCut we
can get and set the shortcuts for

Type
 TIMenuFlag = (mfInvalid, mfEnabled, mfVisible, mfChecked, mfBreak,
 mfBarBreak, mfRadioItem);
 TIMenuFlags = set of TIMenuFlag;
 TIMenuClickEvent = procedure (Sender: TIMenuItemIntf) of object;
 TIMenuItemIntf = class(TInterface)
 public
 function DestroyMenuItem: Boolean; virtual; stdcall; abstract;
 function GetIndex: Integer; virtual; stdcall; abstract;
 function GetItemCount: Integer; virtual; stdcall; abstract;
 function GetItem(Index: Integer): TIMenuItemIntf; virtual; stdcall;
 abstract;
 function GetName: string; virtual; stdcall; abstract;
 function GetParent: TIMenuItemIntf; virtual; stdcall; abstract;
 function GetCaption: string; virtual; stdcall; abstract;
 function SetCaption(const Caption: string): Boolean; virtual; stdcall;
 abstract;
 function GetShortCut: Integer; virtual; stdcall; abstract;
 function SetShortCut(ShortCut: Integer): Boolean; virtual; stdcall;
 abstract;
 function GetFlags: TIMenuFlags; virtual; stdcall; abstract;
 function SetFlags(Mask, Flags: TIMenuFlags): Boolean; virtual; stdcall;
 abstract;
 function GetGroupIndex: Integer; virtual; stdcall; abstract;
 function SetGroupIndex(GroupIndex: Integer): Boolean; virtual; stdcall;
 abstract;
 function GetHint: string; virtual; stdcall; abstract;
 function SetHint(Hint: string): Boolean; virtual; stdcall; abstract;
 function GetContext: Integer; virtual; stdcall; abstract;
 function SetContext(Context: Integer): Boolean; virtual; stdcall;
 abstract;
 function GetOnClick: TIMenuClickEvent; virtual; stdcall; abstract;
 function SetOnClick(Click: TIMenuClickEvent): Boolean; virtual;
 stdcall; abstract;
 function InsertItem(Index: Integer; Caption, Name, Hint: string;
 ShortCut, Context, GroupIndex: Integer; Flags: IMenuFlags;
 EventHandler: TIMenuClickEvent): TIMenuItemIntf; virtual; stdcall;
 abstract;
 end;

➤ Listing 4

TIMainMenuIntf = class(TInterface)
public
 function GetMenuItems: TIMenuItemIntf; virtual; stdcall; abstract;
 function FindMenuItem(const Name: string): TIMenuItemIntf; virtual;
 stdcall; abstract;
end;

➤ Listing 3

46 The Delphi Magazine Issue 13

the individual menu items. Again,
we cannot really modify the pre-
existing Delphi IDE menu short-
cuts, but only the added ones.
Other functions include GetFlags
and SetFlags, to get and set the
state of the menu item, GetGroupIn-
dex and SetGroupIndex, to get and
set the GroupIndex property of a
TMenuItem (useful for specifying

values for grouped radio menus),
GetContext and SetContext to get
and set the help context ID of a
TMenuItem, and finally GetHint and
SetHint that do not work at all (the
IDE seems to simply ignore them).

There is one more really impor-
tant method left: InsertItem. This is
the API that creates and inserts our
new sub menu item into the menu

of the Delphi IDE. The function
takes a lot of arguments, so let’s
have another look (Listing 5).

Index is the place where the new
menu item should be placed (in the
list of the Parent’s menu items). If
the index is less than zero or equal
or greater than GetItemCount, then
the new menu item is actually
appended to the bottom of the list
(since the list is zero-based).

The Caption is the text that we’ll
see in the menu, something like
’&Dr.Bob’’s Expert’. The Name is
the name of the VCL menu item
component. It’s not clear whether
or not this name should be actually
the same as the component name
that holds the menu item that
we’ve just created: in that case, we
probably need to use some unique
component name as well. For now,
I’ve used DrBobItem, which seems
pretty unique (so far). The final
string is a Hint, which is not used
at this time it seems, so I leave it
blank for now. Then, we can add a
ShortCut key, a help Context and
GroupIndex. As MenuFlags I always
use enabled and visible, but we
can pick from a set of them (see
Listing 4). Finally, we need to
assign an OnClick event that gets
fired when the menu item for our
expert is selected. This is the place
where for other expert types our
Execute method would kick in. Now
we need a method of type
TIMenuClickEvent (Listing 5). So, an
actual call to InsertItem could be:

DrBobItem := Tools.InsertItem(

 ToolsTools.GetIndex+1,

 ’&Dr.Bob’’s Expert’,

 ’DrBobItem’,’’,

 ShortCut(Ord(’D’), [ssCtrl]),0,0,

 [mfEnabled, mfVisible], OnClick);

The last two methods of
TIMenuItemIntf are GetOnClick and
SetOnClick, which can be used to
get and set the OnClick method
(useful in case we want to do
something else based on a special
condition).

With this additional information,
it’s time to add code to our AddIn
expert. What would be the best
place to add it to the Delphi IDE
menu system? Well, a constructor
would seem a fine place to me. But

function InsertItem(Index: Integer; Caption, Name, Hint: String; ShortCut,
 Context, GroupIndex: Integer; Flags: TIMenuFlags; EventHandler:
 TIMenuClickEvent): TIMenuItemIntf; virtual; stdcall ;abstract;

➤ Listing 5

Type
 TBAddInExpert = class(TIExpert)
 public
 constructor Create; virtual;
 destructor Destroy; override;
 function GetStyle: TExpertStyle; override;
 function GetIDString: String; override;
 function GetName: String; override;
 function GetAuthor: String; override;
 protected
 procedure OnClick(Sender: TIMenuItemIntf); virtual;
 private
 MenuItem: TIMenuItemIntf;
 end {TBAddInExpert};

constructor TBAddInExpert.Create;
var Main: TIMainMenuIntf;
 ToolsTools: TIMenuItemIntf;
 Tools: TIMenuItemIntf;
begin
 inherited Create;
 MenuItem := nil;
 if ToolServices <> nil then begin
 Main := ToolServices.GetMainMenu;
 if Main <> nil then { we’ve got the main menu }
 try
 ToolsTools := Main.FindMenuItem(’ViewPrjMgrItem’);
 if ToolsTools <> nil then { we’ve got the “ Tools | Tools” item }
 try
 Tools := ToolsTools.GetParent;
 if Tools <> nil then { we’ve got the Tools menu }
 try
 MenuItem := Tools.InsertItem(ToolsTools.GetIndex+1,
 ’&Dr.Bob’’s Expert’, ’DrBob’,’’, ShortCut(Ord(’D’),
 [ssCtrl]),0,0, [mfEnabled, mfVisible], OnClick)
 finally
 Tools.DestroyMenuItem
 end
 finally
 ToolsTools.DestroyMenuItem
 end
 finally
 Main.Free
 end
 end
end {Create};

destructor TBAddInExpert.Destroy;
begin
 if MenuItem <> nil then MenuItem.DestroyMenuItem;
 inherited Destroy
end {Destroy};

procedure TBAddInExpert.OnClick(Sender: TIMenuItemIntf);
begin
 ShowMessage(’Dr.Bob Says: Hello, World!’#10#10+
 ’Thank you for reading my’#10+
 ’Under Construction column’#10+
 ’in The Delphi Magazine!’)
end {OnClick};

➤ Listing 6

September 1996 The Delphi Magazine 47

TIExpert doesn’t have a construc-
tor! OK, so let’s define one! And
while we’re at it, let’s override the
destructor as well to make sure we
clean up the MenuItem that we’ll
create in the constructor in the
first place. See Listing 6.

Note that I’ve looked for the
menu item called ’ViewPrjMgrItem’,
which is a rather funny looking
name. How did I know what to look
for in the first place? Well, sit tight,
because we’re about to find out the
names of all Delphi’s menu items.

After we’ve installed our first
AddIn expert (more about this
later), we can start Delphi up again
and see it as part of the View menu
(see Figure 1).

Menu Names
We’ve seen a generic but pretty
useless expert so far. In order to
write truly useful experts, we need
to do something special inside the
OnClick method, like show an inter-
esting form in which a lot of things
can happen. But first, let’s dig a
little bit deeper in the main menu
of the Delphi IDE. Now that we have
the power, let’s use it to get a list of
VCL names for the individual menu
items, so we don’t need to look for
one if we need it. To do this, I’ve
made a new MenuList Expert which
just contains a modified Create
constructor, to walk through the
main menu items and write their
names to a file (Listing 7).

The resulting list is pretty im-
pressive and gives us a good idea
of which VCL menu item compo-
nent names are used (and can be
used as arguments to the Find-
MenuItem function of the MainMenu).
A list is included on this month’s
disk, but you can create it yourself
with the TBMenuList expert.

The third and last expert we will
create is one that I’d like to add to
the Tools menu. Here’s the list of
menu items that the MenuList
expert found for the ToolsMenu:

ToolsMenu
 ToolsOptionsItem
 ToolsGalleryItem
 ToolsToolsItem

At first sight there’s nothing
special, right? Well, it turns out

that we somehow cannot get a cor-
rect handle to the ToolsToolsItem.
Probably because this menu is
created dynamically by Delphi and
possibly modified after our expert
has “nested” itself in the menu.

Installing ourselves between the
ToolsGalleryItem (actually the re-
pository) and the ToolsToolsItem
does work without problem as
expected. That’s the place where
we’ll install our third expert: the
Error Report Expert.

Error Report Tool
This is basically the same as the
first two, except for the fact that
in the OnClick even we’ll do a
ShowModal of a form with a connec-
tion to a special database. In this
case, a database with error re-
ports, fixes and verification re-
ports on these fixes. Figure 2 shows

the expert in action and an example
database is included on the disk.
With the shortcut Ctrl+E any user
of Delphi 2 can activate this AddIn
expert and have a look at the error
report database (which could be
shared on a network).

As I’ve said, the expert skeleton
is basically the same. The only

constructor TBListMenuExpert.Create;
var Main: TIMainMenuIntf;
 MenuItems: TIMenuItemIntf;
 ToolsTools: TIMenuItemIntf;
 Tools: TIMenuItemIntf;
 i,j: Integer;
 f: System.Text;
begin
 inherited Create;
 if ToolServices <> nil then
 try
 Main := ToolServices.GetMainMenu;
 if Main <> nil then { we’ve got the main menu }
 try
 MenuItems := Main.GetMenuItems;
 if MenuItems <> nil then
 try
 System.Assign(f,’C:\MENU’);
 System.Rewrite(f);
 writeln(f,MenuItems.GetName,’ -’,MenuItems.GetItemCount);
 for i:=0 to Pred(MenuItems.GetItemCount) do begin
 Tools := MenuItems.GetItem(i);
 if Tools <> nil then { we’ve got a sub-menu }
 try
 writeln(f,’ ’,Tools.GetName);
 for j:=0 to Pred(Tools.GetItemCount) do begin
 ToolsTools := Tools.GetItem(j);
 if ToolsTools <> nil then { sub-sub-menu }
 try
 writeln(f,’ ’,ToolsTools.GetName);
 finally
 ToolsTools.DestroyMenuItem
 end
 end
 finally
 Tools.DestroyMenuItem
 end
 end
 finally
 System.Close(f);
 MenuItems.DestroyMenuItem
 end
 finally
 Main.Free
 end
 except
 HandleException
 end
end {Create};

➤ Listing 7

➤ Figure 1

48 The Delphi Magazine Issue 13

routines needing modification are
Create and OnClick, in which we
show a form of type TReportForm,
for which you can find full source
code on this issue’s disk (Listing 8).

Note the use of exceptions in the
OnClick event. Actually, things get
even more complicated, since all
three AddIn experts that I’ve
shown so far are in fact DLL experts
and are installed using the registry
instead of CMPLIB32.DCL.

DLL Experts
The easiest way to write an expert
is to treat and install it as a regular
component: inside CMPLIB32.DCL
(see my expert article in Issue 3).
However, Delphi also allows DLL
experts. As an example, you should
check out EXPTDEMO.DLL which
contains the Dialog and Applica-
tion experts that are shipped with
the standard version of Delphi.

When writing DLL experts for
Delphi, it is very important to make
sure that all exceptions that may
be raised inside the DLL are also
handled within the same DLL (they
have no meaning outside the DLL,
as the DLL may be servicing other
non-Delphi applications and even if
another Delphi application will be
calling the DLL, the code/data seg-
ment would be set all wrong to be
able to handle the exception cor-
rectly. An access violation would
result). So, we need to be sure to
use a try-except block around all
our code in the DLL (Listing 9).

Two new functions also need to
be defined in the DLL versions of

➤ Figure 2

constructor TBReportExpert.Create;
var Main: TIMainMenuIntf;
 ToolsTools: TIMenuItemIntf;
 Tools: TIMenuItemIntf;
begin
 inherited Create;
 MenuItem := nil;
 if ToolServices <> nil then begin
 Main := ToolServices.GetMainMenu;
 if Main <> nil then { we’ve got the main menu }
 try
 ToolsTools :=
 Main.FindMenuItem(’ToolsGalleryItem’);
 if ToolsTools <> nil then
 { we’ve got the “ Tools | Tools” item }
 try
 Tools := ToolsTools.GetParent;
 if Tools <> nil then { we’ve got the Tools menu }
 try
 MenuItem := Tools.InsertItem(
 ToolsTools.GetIndex+1, ’&Error Reports’,
 ’BERT’,’’, ShortCut(Ord(’E’),[ssCtrl]),0,0,

 [mfEnabled, mfVisible], OnClick)
 finally
 Tools.DestroyMenuItem
 end
 finally
 ToolsTools.DestroyMenuItem
 end
 finally
 Main.Free
 end
 end
end {Create};

procedure TBReportExpert.OnClick(Sender: TIMenuItemIntf);
begin
 with TReportForm.Create(Application) do
 try
 ShowModal
 finally
 Free
 end
end {OnClick};

procedure HandleException;
begin
 if Assigned(ToolServices) then
 ToolServices.RaiseException(ReleaseException)
end {HandleException};
{ the code inside the DLL will look as follows: }
try
 { do the old stuff... }
except
 HandleException
end

procedure DoneExpert; export;
begin
 { WEP && cleanup }
end;

function InitExpert(ToolServices: TIToolServices; RegisterProc:
 TExpertRegisterProc;
var Terminate: TExpertTerminateProc):
 Boolean; stdcall;
begin
 ExptIntf.ToolServices := ToolServices; { Save! }
 if ToolServices <> nil then
 Application.Handle :=
 ToolServices.GetParentHandle;
 Terminate := DoneExpert;
 if (@RegisterProc <> nil) then
 Result := RegisterProc(TBReportExpert.Create)
end {InitExpert};

exports
 InitExpert name ExpertEntryPoint;

➤ Below: Listing 8

➤ Below: Listing 10➤ Above: Listing 9

September 1996 The Delphi Magazine 49

our AddIn experts: InitExpert and
DoneExpert, defined as in Listing 10.

Installation
To install DLL experts you need to
use the Windows 95 Registry. Sim-
ply start up REGEDIT and go to the
MyComputer\HKEY_CURRENT_USER\Software\

Borland\Delphi\2.0\Experts

section where you need to add a
new key with any name you wish
and as the value the place where to
find the DLL expert.

After we’ve installed the AddIn
experts, we can start Delphi 2 up
again and check the Delphi IDE

Menu. Check the Tools menu for
the Error Report expert and indeed
it’s there (Figure 4). But of course,
you’re now itching to start writing
your own AddIn experts, which is
why I should stop writing right now
and give you time to experiment...

Conclusions
For more information on writing
Delphi Experts, I suggest the book
Revolutionary Guide to Delphi 2.0,
published by WROX Press which
contains a rather big chapter on
the Delphi 2.0 Open Tools API in
general and experts in particular.

[Now I wonder who wrote that
chapter...?! Editor]

Next time, we’ll get back to com-
ponent building, testing and de-
bugging, looking at some really
interesting techniques and tools!

Bob Swart (http://www.pi.net/~drbob/)
is a full-time professional knowl-
edge engineer for Bolesian in The
Netherlands and a freelance tech-
nical author. In his spare time, Bob
likes to watch video tapes of Star
Trek Voyager and Deep Space
Nine with his 2.5-year old son Erik
Mark Pascal.

➤ Left: Figure 3

➤ Above: Figure 4

50 The Delphi Magazine Issue 13

	Menu Names
	Error Report Tool
	DLL Experts
	Installation
	Conclusions

